博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
吴恩达“机器学习”——学习笔记七
阅读量:4971 次
发布时间:2019-06-12

本文共 1069 字,大约阅读时间需要 3 分钟。

核(kernels)

将特征x映射到另一组特征上,比如将x映射到x,x^2,x^3上,并将这个映射组成的向量记为phi。

将学习算法中的x换成phi(x)。

定义核函数

。使用核函数代替phi(x)的内积。

假设有两个变量特征,假设核函数等于将式子变形可以得到

所以对应的phi(x)等于

为了计算出phi(x)需要时间复杂度为O(n^2),n代表x的维度。但是去计算核函数的值只需要O(n)的时间复杂度。

核函数的推广

对于任意给出的一些东西,要对其分类,如果希望学习算法认为x和z是相近的,那么需要尝试找到一个核K(x,z)取一个较大的值,反之,取一个较小的值。所以,根据这种思想,可以写出高斯核函数

判断核函数是否有效

对于给定的核函数,判断其是否为有效核函数,即为是否能找到一个映射phi,使得成立。

假设K是一个有效核函数,对于任意给定点集合,定义核矩阵k(m*m)。矩阵上的值与核函数相对应,即

对于任意给定的m维向量z,考虑

这说明了k是半正定矩阵,即k>0。

所以,如果一个核函数是有效的,那么核矩阵应该是对称半正定矩阵。

 L1 norm soft margin SVM

让算法能够处理非线性可分数据集以及忽略一些异常值,对之前的算法进行修改,加上惩罚项,

对应的lagrange算子为。这个优化问题的对偶问题为

对应的KKT条件为

坐标上升算法(coordinate ascent)

,使W函数最大化,坐标上升算法的过程为,

 坐标上升算法与其他算法相比,迭代次数会较多,但是代价会较少。但是坐标上升的基本形式不能直接用于SVM对偶优化问题的求解上面。

序列最小优化算法(SMO)

坐标上升算法改变一个alpha的值,SMO一次改变两个alpha的值。想解决的对偶优化问题如下,

 算法思路为,循环直至收敛{

1.根据启发式规则选取要改变的alpha_i,alpha_j。

2.保持除这两个参数之外的其他参数值不变,同时相对于这两个参数使得W取最优。

}

假设固定a1,a2以外的其他参数不变,则约束可以写成,画出下图,

可以将w转化为由w的定义可以得到,w对每一个参数来说都是二次函数。所以固定其他参数不变的情况下,对alpha2来说,就是一个二次函数,。结合上图中的方形约束,直线以及该二次函数,便可以求出alpha2,然后带入等式得出alpha1,这样就可以求得相对于alpha1,alpha2的w最优值。

转载于:https://www.cnblogs.com/xxp17457741/p/8409339.html

你可能感兴趣的文章
**p
查看>>
优先队列详解
查看>>
VS2012 创建项目失败,,提示为找到约束。。。。
查看>>
设计类图
查看>>
类对象
查看>>
ios 上架流程
查看>>
ajax连接池和XMLHttpRequest
查看>>
[Voice communications] 声音的滤波
查看>>
BZOJ.3139.[HNOI2013]比赛(搜索 Hash)
查看>>
json在线解析
查看>>
存储设备形成的层次结构
查看>>
源码阅读 - java.util.concurrent (三)ConcurrentHashMap
查看>>
Daily Scrum 10.30
查看>>
SQL语言之概述(一)
查看>>
数据库表 copy
查看>>
LinkedList源码解析
查看>>
SignalR循序渐进(一)简单的聊天程序
查看>>
MyServer
查看>>
Learning Cocos2d-x for XNA(2)——深入剖析Hello World
查看>>
软件建模——第9章 毕业论文管理系统—面向对象方法
查看>>